Custom Menu
Latest From Our Blog
Michał Oszmaniec Quantum Information Research Group
page-template,page-template-full_width,page-template-full_width-php,page,page-id-19714,,vertical_menu_enabled,wpb-js-composer js-comp-ver-5.4.5,vc_responsive


28.  F. Maciejewski, F. Baccari, Z. Zimboras,  M. Oszmaniec
Modellung and mitigation of realistic readout noise with applications to Quantum Approximate Optimization Alghorithm


27.  M. Oszmaniec , N. Dangniam, M. Morales,  Z. Zimboras  
Fermion Sampling: a robust quantum advantage scheme using fermionic linear optics and magic input states

26.  M. Oszmaniec , A. Sawciki, M. Horodecki  
Epsilon nets, unitary designs, and random quantum circuits

25.  N. Miklin and M. Oszmaniec  
A universal scheme for robust self-testing in the prepare-and-measure scenario

24.  D. Saha, M. Oszmaniec, Ł. Czekaj, M. Horodecki, R. Horodecki  
Operational foundations of complementarity and uncertainty relations 
Phys. Rev. A 101, 0542104 arxiv version 

23. D. Brod and  M. Oszmaniec
Classical simulation of linear optics subject to nonuniform losses 
Quantum 4, 267 (2020)arxiv version

22. F. B. Maciejewski, Z. Zimborás, M. Oszmaniec
Mitigation of readout noise in near-term quantum devices by classical post-processing based on detector tomography 
Quantum 4, 257 (2020)  , arxiv version


21. M. Oszmaniec, F. B. Maciejewski, Z Puchała 
All quantum measurements can be simulated using projective measurements and postselection 
Phys. Rev.  A 100 (1) 012351 (2019) ,  arXiv version  

20.   M. Oszmaniec and T. Biswas
Operational relevance of resource theories of measurements 
Quantum 3, 133 (2019) , arXiv version


19.  Z. Puchała, Ł. Pawela, A. Krawiec, R. Kukulski, M. Oszmaniec
Multiple-shot and unambiguous discrimination of von Neumann measurements 

18. M. Oszmaniec, D. J. Brod,
Classical simulation of photonic linear optics with lost particles
New J. Phys. 20 092002 (2018) , arxiv version 

17. A. Sawicki, T. Maciążek, M. Oszmaniec, K. Karnas, K. Kowalczyk-Murynka, M. Kuś,
Multipartite quantum correlations: symplectic and algebraic geometry approach

Rep. Math. Phys. 82 (1), 81-11 (2018) ,  arxiv version


16. M. Oszmaniec and Z. Zimboras,
Universal Extensions of Restricted Classes of Quantum Operations
Phys. Rev. Lett. 119, 220502 (2017) , arXiv version

15. M. Oszmaniec, L. Guerini, P. Wittek, A. Acin,
Simulating Positive-Operator-Valued Measures with Projective Measurements 
Phys. Rev. Lett. 119, 190501 (2017) ,  arXiv version

14. S. Altenburg, M. Oszmaniec, S. Wölk, and O. Gühne,
Estimation of gradients in quantum metrology
Phys. Rev. A, 96042319 (2017) , arXiv version


13. M. Oszmaniec, R. Augusiak, C. Gogolin, J. Kołodyński, A. Acín, M. Lewenstein,
Random Bosonic States for Robust Quantum Metrology
Physical Review X 6 (4), 041044 (2016)

12. M. Oszmaniec, A. Grudka, M. Horodecki, A. Wójcik,
Creating a Superposition of Unknown Quantum States
Phys. Rev. Lett. 116, 110403 (2016)

11. W. Kłobus, M. Oszmaniec, R. Augusiak, A. Grudka,
Communication Strength of Correlations Violating Monogamy Relations 
Foundations of Physics, 46 (5), pp. 620–634 (2016)


10. M. Oszmaniec, J .Gutt and M. Kuś,
Classical simulation of fermionic linear optics augmented with noisy ancillas
Phys. Rev. A 90, 020302(R) (2014)

9. M. Oszmaniec and M. Kuś,
Fraction of isospectral states exhibiting quantum correlations
Phys. Rev. A 90, 010302(R) (2014)

8. P. Migdał, J. Rodríguez-Laguna, M. Oszmaniec, and M. Lewenstein,
Multiphoton states related via linear optics
Phys. Rev. A 89, 062329 (2014)

arXiv: 1403.3069 (2014)

7. M. Oszmaniec, P. Suwara and A. Sawicki,
Geometry and topology of CC and CQ states
J. Math. Phys. 55, 062204 (2014)

6. A. Sawicki, M. Oszmaniec and M. Kuś,
Convexity of momentum map, Morse index, and quantum entanglement
Rev. Math. Phys. 26, 1450004 (2014)

5. M. Oszmaniec,
PhD Thesis: Applications of differential geometry and representation theory to description of quantum correlations
arXiv:1412.4657 (2014)


4. M. Oszmaniec and M. Kuś,
Universal framework for entanglement detection
Phys. Rev. A 88, 052328 (2013)

3. T. Maciążek, M. Oszmaniec and A. Sawicki,
How many invariant polynomials are needed to decide local unitary equivalence of qubit states?
J. Math. Phys. 54, 092201 (2013)


2. A. Sawicki, M. Oszmaniec and M. Kuś,
Critical sets of the total variance can detect all stochastic local operations and classical communication classes of multiparticle entanglement
Phys. Rev. A 86, 040304(R) (2012)

1. M. Oszmaniec and M. Kuś,
On detection of quasiclassical states
J. Phys. A: Math. Theor. 45 244034 (2012)