29. T. Singal, F. B. Maciejewski and M. Oszmaniec
Implementation of quantum measurements using classical resources and only a single auxiliary qubit
arxiv: 2104.05612
28. N. Miklin and M. Oszmaniec
A universal scheme for robust self-testing in the prepare-and-measure scenario
Quantum 5, 424 (2021) , arxiv version
27. Z. Puchała, Ł. Pawela, A. Krawiec, R. Kukulski, M. Oszmaniec
Multiple-shot and unambiguous discrimination of von Neumann measurements
Quantum 5, 425 (2021) , arxiv version
26. F. Maciejewski, F. Baccari, Z. Zimboras, M. Oszmaniec
Modellung and mitigation of realistic readout noise with applications to Quantum Approximate Optimization Alghorithm
arXiv:2101.02331
25. M. Oszmaniec , N. Dangniam, M. Morales, Z. Zimboras
Fermion Sampling: a robust quantum advantage scheme using fermionic linear optics and magic input states
arXiv:2012.15825
24. M. Oszmaniec , A. Sawciki, M. Horodecki
Epsilon nets, unitary designs, and random quantum circuits
arXiv:2007.10885
23. D. Saha, M. Oszmaniec, Ł. Czekaj, M. Horodecki, R. Horodecki
Operational foundations of complementarity and uncertainty relations
Phys. Rev. A 101, 0542104 , arxiv version
22. D. Brod and M. Oszmaniec
Classical simulation of linear optics subject to nonuniform losses
Quantum 4, 267 (2020) , arxiv version
21. F. B. Maciejewski, Z. Zimborás, M. Oszmaniec
Mitigation of readout noise in near-term quantum devices by classical post-processing based on detector tomography
Quantum 4, 257 (2020) , arxiv version
20. M. Oszmaniec, F. B. Maciejewski, Z Puchała
All quantum measurements can be simulated using projective measurements and postselection
Phys. Rev. A 100 (1) 012351 (2019) , arXiv version
19. M. Oszmaniec and T. Biswas
Operational relevance of resource theories of measurements
Quantum 3, 133 (2019) , arXiv version
18. M. Oszmaniec, D. J. Brod,
Classical simulation of photonic linear optics with lost particles
New J. Phys. 20 092002 (2018) , arxiv version
17. A. Sawicki, T. Maciążek, M. Oszmaniec, K. Karnas, K. Kowalczyk-Murynka, M. Kuś,
Multipartite quantum correlations: symplectic and algebraic geometry approach
16. M. Oszmaniec and Z. Zimboras,
Universal Extensions of Restricted Classes of Quantum Operations
Phys. Rev. Lett. 119, 220502 (2017) , arXiv version
15. M. Oszmaniec, L. Guerini, P. Wittek, A. Acin,
Simulating Positive-Operator-Valued Measures with Projective Measurements
Phys. Rev. Lett. 119, 190501 (2017) , arXiv version
14. S. Altenburg, M. Oszmaniec, S. Wölk, and O. Gühne,
Estimation of gradients in quantum metrology
Phys. Rev. A, 96, 042319 (2017) , arXiv version
13. M. Oszmaniec, R. Augusiak, C. Gogolin, J. Kołodyński, A. Acín, M. Lewenstein,
Random Bosonic States for Robust Quantum Metrology
Physical Review X 6 (4), 041044 (2016)
12. M. Oszmaniec, A. Grudka, M. Horodecki, A. Wójcik,
Creating a Superposition of Unknown Quantum States
Phys. Rev. Lett. 116, 110403 (2016)
11. W. Kłobus, M. Oszmaniec, R. Augusiak, A. Grudka,
Communication Strength of Correlations Violating Monogamy Relations
Foundations of Physics, 46 (5), pp. 620–634 (2016)
10. M. Oszmaniec, J .Gutt and M. Kuś,
Classical simulation of fermionic linear optics augmented with noisy ancillas
Phys. Rev. A 90, 020302(R) (2014)
9. M. Oszmaniec and M. Kuś,
Fraction of isospectral states exhibiting quantum correlations
Phys. Rev. A 90, 010302(R) (2014)
8. P. Migdał, J. Rodríguez-Laguna, M. Oszmaniec, and M. Lewenstein,
Multiphoton states related via linear optics
Phys. Rev. A 89, 062329 (2014)
7. M. Oszmaniec, P. Suwara and A. Sawicki,
Geometry and topology of CC and CQ states
J. Math. Phys. 55, 062204 (2014)
6. A. Sawicki, M. Oszmaniec and M. Kuś,
Convexity of momentum map, Morse index, and quantum entanglement
Rev. Math. Phys. 26, 1450004 (2014)
5. M. Oszmaniec,
PhD Thesis: Applications of differential geometry and representation theory to description of quantum correlations
arXiv:1412.4657 (2014)
4. M. Oszmaniec and M. Kuś,
Universal framework for entanglement detection
Phys. Rev. A 88, 052328 (2013)
3. T. Maciążek, M. Oszmaniec and A. Sawicki,
How many invariant polynomials are needed to decide local unitary equivalence of qubit states?
J. Math. Phys. 54, 092201 (2013)
2. A. Sawicki, M. Oszmaniec and M. Kuś,
Critical sets of the total variance can detect all stochastic local operations and classical communication classes of multiparticle entanglement
Phys. Rev. A 86, 040304(R) (2012)
1. M. Oszmaniec and M. Kuś,
On detection of quasiclassical states
J. Phys. A: Math. Theor. 45 244034 (2012)